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Abstract. Localization and dephasing of conduction electrons in a low carrier density ferromagnet due to
scattering on magnetic fluctuations is considered. We claim the existence of the “mobility edge”, which
separates the states with fast diffusion and the states with slow diffusion; the latter is determined by
the dephasing time. When the “mobility edge” crosses the Fermi energy a large and sharp change of
conductivity is observed. The theory provides an explanation for the observed temperature dependence of
conductivity in ferromagnetic semiconductors and manganite pyrochlores.

PACS. 75.50.Pp Magnetic semiconductors – 75.70.Pa Giant magnetoresistance – 72.10.-d Theory of
electronic transport; scattering mechanisms – 72.10.Di Scattering by phonons, magnons, and other
nonlocalized excitations

1 Introduction

Colossal magnetoresistance (CMR) materials attract
nowadays considerable interest, associated mostly with
the properties of double-exchange manganite perovskites
[1]. Class of CMR materials, however, is much wider and
includes, in particular, magnetic semiconductors [2] and
manganite pyrochlores [3]. All these materials are charac-
terized by strong interaction between the localized spins
and itinerant charge carriers. In all these materials CMR is
associated with the sharp increase of the resistivity when
the temperature T approaches the Curie temperature Tc.
However, taking into account the large variety of the ma-
terials involved and diverse manifestations of the effect, it
is difficult to expect that any single theory can provide a
universal explanation of the phenomena.

We concentrate on low carrier density materials (mag-
netic semiconductors and manganite pyrochlores), where
the carriers do not affect the spin-spin interaction, and
magnetic d- or f -ions interact mainly via ferromagnetic
direct exchange (super-exchange). These materials be-
ing deficient in chalcogen (oxygen) or being properly
doped, have at low temperatures quasi-metallic conduc-
tivity. When the temperature approaches Tc they undergo
the metal-insulator transition.
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In the previous publications [4–6] we suggested, that
such behavior of the conductivity is due to Anderson lo-
calization of the carriers driven by spin fluctuations of
magnetic ions. We considered the spin fluctuations as
static; hence the scattering of electrons by the fluctuations
can be treated as elastic, and hence it leads to the exis-
tence of the mobility edge Ec. (This mechanism is close to
the phonon scattering induced electron localization [7,8].)
When the temperature increases, so does the scattering
intensity, which leads to the upward motion of the mo-
bility edge. The temperature at which the mobility edge
crosses the Fermi level is identified with the temperature
of the metal-insulator transition (MIT). This view point
on temperature-induced MIT has also been recognized and
legitimated in several recent publications [9–11].

In this paper we consider the influence of the dynamics
in the spin subsystem on the transition by developing an
idea suggested in reference [12]

2 Hamiltonian and approximations

The Hamiltonian of the system has the form

H =
∑
kσ

Ekc
†
kσckσ −

I

N

∑
kqσσ′

Sqσσσ′c
†
kσck+qσ′ +HM,

(1)
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where Ek is the bare electron spectrum, c†k,σ, ck,σ are the
electron creation and annihilation operators, I is the pa-
rameter of Hund exchange between the electrons and lo-
calized spins, Sq is the Fourier components of the spin
density, σ is the vector of the Pauli spin matrices and
HM is the direct exchange interaction described by super-
exchange integral J(Q).

Let us state the relations between the parameters of
the problem. We consider the case of wide conduction
band W � 2IS, where W ∼ 1/ma2 is the width of the
conduction band (a is the lattice constant and and m is
the electron mass), S is the spin of magnetic ion. This in-
equality is certainly applicable to such magnetic semicon-
ductors as EuO and EuS [13]. For manganite pyrochlores
we do not have strong inequality [14], but we believe that
the approximation still works in this case, at least semi-
quantitatively1. Due to low carrier density considered (not
in excess of 10−19 cm−3), the Fermi energy EF is at least
an order of magnitude less then 2IS (which is larger than
0.5 eV in the materials considered [13,14]). We consider
ferromagnetic phase and temperatures such that the spin
splitting of the conduction band is larger than EF (estima-
tions show, that this will be true up to the temperatures
very close to Tc). All our assumptions can be thus reduced
to inequalities

W � 2IS

2ISz � EF � T, (2)

where Sz, is the average spin of magnetic ion.
In the wide conduction band case the electron-spin

exchange can be treated as a perturbation, leading to
electron scattering. The conduction electrons being fully
spin-polarized and spin-flip processes thus being for-
bidden, the scattering (in the Born approximation) is
connected only with the longitudinal spin correlator
〈δSzqδS

z
−q〉. It is argued [15], that for the wavevector q

small enough (qa < const(Sz)2) the correlator is dom-
inated by contribution of weakly interacting spin waves
with the dispersion law

ωQ = 2Sz[J(0)− J(Q)] (3)

and quasi-classical occupation numbers

nQ =
T

ωQ
· (4)

As a result the static correlator is [15]

〈δSzqδS
z
−q〉 =

T 2

8Sz
2
C2

1

qa
, (5)

where C is the spin stiffness (for nearest-neighbor ex-
change in a cubic lattice C ' Tc/2S(S + 1)).

1 We emphasize here the difference between the manganite
pyrochlores, which are n-type low carrier density intermediate-
band materials, and the manganite perovskites, which are p-
type high carrier density narrow-band materials; the latter thus
being definitely outside the scope of the theory presented in the
paper.

(a) (b)

0 t

0 t t 0

0 t1 2

1 2 t-1 t-2

21

Fig. 1. Diagrams for the Diffuson (a) and the Cooperon (b).
Solid line is dressed electron propagator, dashed line connect-
ing times t and t′ corresponds to Φzz(t− t

′).

For the transport relaxation time we obtain

1

τ
=

2π

N
I2
∑
q

〈δSzqδS
z
−q〉

k · q

k2
δ(Ek − Ek+q)

=
ma2I2T 2

16πSz
2
C2
∼
I2S(S + 1)

W

T 2

T 2
c

S2

Sz
2 · (6)

We see that for temperatures high enough, τEF < 1.
Hence we need some kind of strong scattering theory. As
such we shall use the self-consistent localization theory by
Vollhard and Wölfle (VW) [16], extended in reference [17]
to systems without time-reversal invariance. But first we
should calculate the crucial parameter in our approach -
the dephasing time τϕ.

3 Dephasing time

The inverse dephasing time can be defined as the mass
of the Cooperon [18,19]. (An alternative, but essentially
equivalent view on dephasing see in Ref. [20].) For the
Cooperon C(R, t) we obtain equation{

∂/∂t−D∇2 + [f(0)− f(t)]
}
C(R, t) = 0, (7)

where

f(t) =
2π

N
I2
∑
q

Φzz(q, t)δ(Ek −Ek+q) (8)

and Φzz(q, t) is the temporal longitudinal spin correlator
(Φzz(q, t = 0) ≡ 〈δSzqδS

z
−q〉).

Equation (7) can be easily understood if we compare
diagrams for the Diffuson and the Cooperon in Figure 1.
The Diffuson does not have any mass because of Ward
identity. In the case of the Cooperon, the Ward identity is
broken: interaction line which dresses single particle prop-
agator is given by static correlator, and interaction line
which connects two different propagators in a ladder is
given by dynamic correlator. The difference [f(0) − f(t)]
shows how strongly the Ward identity is broken and, as
we’ll see below, determines the mass of the Cooperon.
Solving equation (7) we get [21]

C(t) = Cel(t) exp

{∫ t

0

[f(t′)− f(0)] dt′
}
, (9)
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where Cel is the Cooperon calculated ignoring the in-
elasticity of scattering.

Using the spin-wave picture described above, we obtain

Φzz (q, t) =
1

N

∑
Q

nQnQ+q exp [i(ωQ+q − ωQ)t] . (10)

Performing integration in equation (9) we get

C(t) = Cel(t) exp
[
−t3/τ3

ϕ

]
, (11)

where

1

τ3
ϕ

=
π

3N2
I2
∑
Qq

nQnQ+qδ(Ek −Ek+q)(ωQ+q − ωQ)2.

(12)

Calculating the integrals in equation (12) we obtain

1

τϕ
=

(
I2T 2(W − 1)ma5k3

F

18π

)1/3

'

(
I2T 2E

3/2
F

W 5/2

)1/3

(13)

where W is the Watson integral. It is worth noting that
dephasing time is defined by the second time derivative
of Φzz(q, t) at t = 0 which can be calculated via second
moment of corresponding spectral density; the result turns
out to be essentially the same as equation (12). So the
spin-wave picture, being physical one, is not crucial for
obtaining 1/τϕ.

It should be noticed that the form of equation (11)
for the Cooperon is quite general, provided the scatterers
are in a ballistic motion, irrespective of whether they are
point particles [21], phonons [8], or spin waves, like in our
case.

The result for the dephasing time can be understood
using simple qualitative arguments. If all the collisions
lead to the same electron energy change δE, the dephasing
time could be obtained using relation [18]

τϕδE

√
τϕ

τout
∼ 2π, (14)

where τϕ/τout is just the number of scattering acts during
the time τϕ (τout is the extinction time). So in this case

1

τ3
ϕ

∼
(δE)2

τout
· (15)

If we rewrite the formula for the extinction time

1

τout
=

2π

N
I2
∑
q

〈δSzqδS
z
−q〉δ(Ek −Ek+q) (16)

in the form

1

τout
=

2π

N2
I2
∑
Qq

nQnQ+qδ(Ek −Ek+q) (17)

and notice that (ωQ+q − ωQ) is just the energy change
of the electron when scattering on a spin wave, we imme-
diately see that equation (12) is just equation (15) with
the integration with respect to different collision induced
energy changes built in.

4 Conductivity calculation

The time-reversal invariance in the system we are con-
sidering is broken for two reasons. First, because we are
considering ferromagnetic system, it is naturally to ex-
pect that the magnetic field is present in the system.
Even more important is that the dephasing itself breaks
the time-reversal invariance. We have shown in the pre-
vious Section, that due to dephasing the diffusion pole
of the particle-particle propagator disappears, although
particle-hole propagator still has a diffusion pole, which
is guaranteed by particle number conservation. Inserting
equation (11) into the self-consistent equations proposed
in reference [17], for the (particle-hole) diffusion coefficient

D and the particle-particle diffusion coefficient D̃ we ob-
tain system

D0

D
= 1 +

1

πν

∫ ∞
0

∑
k

e−D̃(k+ 2e
c A)

2
t−t3/τ3

ϕdt (18)

D0

D̃
= 1 +

1

πν

∫ ∞
0

∑
k

e−Dk
2tdt, (19)

where ν is the density of states at the Fermi surface, D0

is the diffusion coefficient calculated in Born approxima-
tion and the momentum cut-off |k| < 1/`, where ` is the
transport mean free path, is implied. The conductivity is
connected to the diffusion coefficient in a usual way

σ = e2νD. (20)

For simplicity, we will make an analysis of self-
consistent equations only in the absence of magnetic field
(A = 0). In our case (τϕ � τ), like in the case of purely
elastic scattering, the conductivity drastically differs in
the regions E > Ec and E < Ec, where the mobility edge
Ec is obtained from the equation [16]

Ecτ =
√

3/4π. (21)

More exactly, we have essentially three regions:
1) metallic region (E > Ec) with fast diffusion

D ∼ D0, (22)

where dephasing is irrelevant;
2) “dielectric region” (E < Ec) with slow diffusion

D ∼ D0(k`)2(τ/τϕ), (23)

determined by the dephasing time;

3) critical region around Ec, (|E/Ec − 1| � (τ/τϕ)
1/3

)

D ∼ D0(τ/τϕ)1/3. (24)

When the “mobility edge” crosses the Fermi level EF

(it is achieved by tuning the temperature) the resistivity
changes sharply, which looks like a metal-insulator tran-
sition.
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If we want to take into account the magnetic field in
equation (18), it must be noticed, that the vector poten-
tial A does not commute with the momentum k. So the
equation takes the form

D0

D
= 1 +

1

2πν

∫ ∞
0

∑
E⊥

e−E⊥t−t
3/τ3

ϕdt (25)

where

E⊥ = D̃

[
k2

H +
4

l2H

(
N +

1

2

)]
(26)

(lH is the magnetic length).

5 Discussion

Let us return to equation (12). The electron energy change

in a single scattering δE ∼ Tc

√
EF/W � T , though all

the spin waves (with the energies up to ∼ SzTc/S) partic-
ipate in the dephasing. This quasi-elasticity of scattering
gives the opportunity to calculate the dephasing time the
way we did. (The quasi-elasticity condition holds even bet-
ter for Eq. (17); in this case only the spin waves with small
wave vectors contribute.)

When analyzing explicitly the CMR effect, we should
first and most take into account the influence of the mag-
netic field on the spin disorder. The static spin correlator
(in ferromagnetic phase) becomes [15]

〈δSzqδS
z
−q〉 =

T 2

4πSz
2
C2

1

qa
tan−1 qξ

2
, (27)

where ξ ∼ a

√
SzC/gµBH is the correlation length. Thus

the long wave spin fluctuations are suppressed, which de-
creases scattering and hence reduce the mobility edge.
This mechanism is appropriate for describing CMR ef-
fect in magnetic semiconductors [5], and can be applied
to manganite pyrochlores (these results will be presented
elsewhere).

Second, magnetic field shifts the mobility edge by cut-
ting off the Cooperon (see Eq. (25)). It is appropriate
here to explain, why dephasing, which also cuts off the
Cooperon, influences the localization in a totally differ-
ent way. Consider a case of no magnetic field and a sim-
plified version of the self-consistent localization theory,
when we ignore the difference between D and D̃, and
also consider the dephasing mechanism which leads to
C(t) = Cel(t) exp [−t/τϕ] time dependence2. Then instead
of equations (18) and (19) we have a single one

D0

D
= 1 +

1

πν

∑
k

1

Dk2 + 1/τϕ
· (28)

We see, that due to presence of kd−1 in the numerator in
this equation, the pole of the Cooperon is of no special

2 This happens when the scatterers are in a diffusive motion
[21].

importance at d = 3. The dephasing leads to the delocal-
ization not because it leads to the disappearance of the
diffusion pole, but because there appears in the denomi-
nator the term, which does not depend on D.

Consider finally the paramagnetic (PM) phase. In the
absence of self-consistent localization theory which takes
into account the spin-flip processes, a very rough idea
about the localization in the PM phase we can get from
the Ioffe-Regel criterium for the position of the mobility
edge τEF ≈ 1. Using the well-known expression for spin-
disorder scattering rate at temperatures above, but not
too close to, Tc we arrive to two opportunities. For the
relatively high Fermi energy EF > E0 ∼ I4S4/W 3 the
increase of the temperature above Tc leads to a reverse
insulator-metal transition. In the opposite case the sys-
tem remains in the dielectric phase.

We are grateful to D. Khmel’nitskii for the useful discussions.
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